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Collision of one-dimensional nonlinear chains

Shin-ichiro Nagahiro and Yoshinori Hayakawa
Department of Physics, Tohoku University, Sendai, Japan

~Received 30 July 2002; published 17 March 2003!

We investigate one-dimensional collisions of unharmonic chains and a rigid wall. We find that the coefficient
of restitution~COR! is strongly dependent on the velocity of colliding chains and has a minimum value at a
certain velocity. The relationship between COR and collision velocity is derived for low-velocity collisions
using perturbation methods. We found that the velocity dependence is characterized by the exponent of the
lowest unharmonic term of interparticle potential energy.
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I. INTRODUCTION

In collisions between two bodies, which have internal d
grees of freedom, some of the initial translational energy
transformed into internal energy of the two bodies. This
the major cause of energy dissipation. To characterize
macroscopic features, a phenomenological parameter, th
efficient of restitution~COR!,

h5
Kr

Ki
, ~1!

whereKi andKr are translational kinetic energy before a
after the collision, respectively, is commonly used. Rec
studies of collisions are mainly focused on the determina
of h from microscopic mechanisms.

Hertz developed the theory of collision between frictio
less elastic bodies@1,2# based on his static theory of elast
contact@3#. In the theory, it is assumed that in low-veloci
collisions, the deformation of colliding bodies is given by t
static theory and the production of vibration is totally i
nored. Hence, the theory gives no information on ene
dissipation. Plastic deformation is one of the possible me
of kinetic energy dissipation during collisions. Taking th
into account, the energy dissipation rate 12h is found to
increase with collision velocity, with a power law, with th
exponent 1/2@4#. Considering viscoelastic properties, th
dissipation rate increases with the exponent 2/5@5–7#. These
results were confirmed experimentally@8–10#.

The results presented above are based on quasistati
proximation, hence it is expected that they are restricted
low-velocity collisions. We believe that more general resu
will be obtained through microscopic simulations@11–13#.

Sugiyama and Sasaki@14# and Basile and Dumont@15#
considered collisions between simple one-dimensio
chains and a rigid wall. A chain is composed ofn identical
point particles, which interact with nearest-neighbor p
ticles. If we choose linear force as the interaction betwe
the particles, the COR is independent of collision veloc
and approaches unity in the thermodynamic limit.

In practical cases, deformation that results from collis
may exceed the regime in which Hooke’s law remains va
because the impulsive stress near impact point can be
large even if collision velocity is low@16#. In this study, we
consider the effects of such nonlinear elasticity on ene
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dissipation of one-dimensional rod. To represent a o
dimensional body, we introduce a nonlinear chain model,
perform numerical simulations of collision between the ch
and a rigid wall. We find that the COR of this collision has
minimum value at a certain velocity and derive the veloc
dependence of the COR for low-velocity collisions usi
perturbation methods.

This paper is organized as follows. In the followin
section, we briefly review the studies of Sugiyama a
Sasaki@14# and Basile and Dumont@15#. In Sec. III, we
present our results for collision between nonlinear chains
a wall. Finally, we summarize our results.

II. COLLISIONS OF ONE-DIMENSIONAL
HARMONIC CHAINS

First we briefly discuss the collision of one-dimension
harmonic chains~modelA) with a rigid wall as discussed by
Sugiyama and Sasaki@14#. Consider a chain composed ofn
identical point particles labeledj 51,2, . . . ,n. Each particle
in the chain is linked to nearest-neighbor particles with
Hooke’s spring, as illustrated in Fig. 1.

The Hamiltonian of this system is written as

H5
m

2 (
j 51

n

ẋj
21

1

2
mv2(

j 51

n21

~xj 112xj21!21Vw , ~2!

where xj and ẋ j are the position and velocity of thej th
particle, respectively. We assume the chain is homogene
and all springs have the same spring constantk (5mv2).
Vw represents the hard-core potential of a rigid wall loca
at x50, where collision takes place. Here we notice that

FIG. 1. A schematic diagram of a one-dimensional chain an
rigid wall.
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point particles do not represent atoms or molecules.
valuexi2xi 2121 corresponds to strain of continuum med

During the collision process, only the particlej 51,
which is at the end of the chain, interacts with the wall sin
the positional order of the particles is always kept asxn
,xn21,•••,x2,x1. In the following discussion, we as
sume that the wall is so rigid that the particlex1 simply
reverses its velocity as2 ẋ1→ ẋ1.

Although there is no dissipation term in the Hamiltonia
vibration energy, which remains after the collision is r
garded as the ‘‘dissipated’’ portion of energy. The CORh is,
therefore, evaluated as

h512
Ev ib.

E
, ~3!

whereE is the total energy andEv ib. is the vibration energy,
which remains after the collision.

In the absence ofVw , the equation of motion is written a

ẍ52v2~Ax1b!, ~4!

wherex5(x1 ,x2 , . . . ,xn), b5(2,,0, . . . ,0,,) andA is an
n3n matrix of the form

A5S 1 21 0 ••• 0

21 2 21 0 ••• 0

0 21 2 21 0 ••• 0

A � A

0 ••• 0 21 1

D . ~5!

Taking a principal-axis coordinate system in whichA is di-
agonal, internal vibration of the chain can be represen
using n noninteracting fundamental modes. In the prese
of Vw , collision between the chain and the wall is realized
follows. Assume that the particlej 51 collides with the wall
f (n) times att1 ,t2 , . . . ,t f (n) . The fundamental modes de
scribe equienergy elliptical orbits in phase space. The or
are discontinuous att5t1 ,t2 , . . . ,t f (n) .

For the following numerical simulations, we choose init
conditions

xj5, j ,

ẋ j52v0~ j 51,2, . . . ,n!. ~6!

Before collision, the chain has no internal vibration, i.e., ze
temperature. Figure 2 shows the collision between the w
and the chain withn520. Each line is a trace of the trajec
tory of a particle. In the plot, units on the time axis are tak
ast5(n21),/cl . t indicates the duration in which the lon
gitudinal sound wave propagates from one end of the ch
to the other. Let us call the timetc , during which the colli-
sion takes place, ‘‘contact time.’’ Here we note that cont
time is almost equal to 2t for largen. COR and contact time
are independent of the collision velocity of the chain beca
time intervalsDtq5tq112tq are independent of initial ve
locity for everyq and the orbits retain similar forms even
03660
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initial velocity of the chain varies. Therefore,Ej /E, the ratio
of the j th fundamental mode energy to total energy, does
depend on initial velocity. The COR, which is a ratio
energy, also does not depend on initial velocity. Hereaf
we use the reduced unitcl5t51, setting,, m, and k as
unity.

In modelA, the coefficient of restitutionh depends only
on n. An approximate expression ofh was derived by Basile
and Dumont@15#. To simplify the problem, we assume th
Dtq and the velocity, before theqth collision,vq are constant
for everyq. Numerical simulations show that these are go
approximations. Under this assumption, the vibration ene
of the j th mode after the collision process is given as

Ej5
4m

n
v2cos2S p j

2nD sin2$v j f ~n!Dt/2%

sin2$v jDt/2%
, ~7!

wherev j5sin(pj/n) is the frequency of thej th mode.Dt,
f (n), andv are determined from numerical simulations@15#.
However, we can also estimate these values by solving
collision of the chain withn52:

Dt5
p

A2v
52.22/v ~2.31/v!, ~8!

f ~n!.
2A2

p
n50.90n ~0.867n!, ~9!

v5
p

2A2
v051.11v0 ~1.15v0!, ~10!

FIG. 2. Trajectories of the particles in then520 colliding chain.
~Reduced units wherecl5t51.!
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where the values in brackets were obtained from a nume
simulation of ann5500 chain. We can estimate an appro
mate value ofh by using Eqs.~8!–~10!.

To obtain the asymptotic behavior of 12h for largen, we
expand the dispersion relation

v j5Ak/m
p j

n S 12
p2 j 2

24n2
1••• D . ~11!

Substituting only the leading order of Eq.~11! into Eq. ~7!,
we haveh51. Taking the second order into account, w
obtain

12h;0.652n22/3, ~12!

in the limit n→`. This relationship agrees very well wit
the numerical result. In Fig. 3, we plot the dissipation ra
12h versusn.

III. UNHARMONIC CHAINS

In the case in which the deformation exceeds Hook
regime, stress-strain relation could be asymmetric. In g
eral, we could assume that materials are ‘‘harder’’ or ‘‘stro
ger’’ for compression than for tensile deformation. To a
count this macroscopic nonlinear elasticity into the mod
we introduce several types of nonlinear potentials as inte
tion between particles:

~a! Lennard-Jones potential

ULJ~x!5
1

72H S 1

xD 12

22S 1

xD 6J ;

~b! Toda potential

FIG. 3. A log-log plot of dissipation rate versus number of p
ticles. The solid line has slope22/3. ~Reduced units wherecl5t
51.!
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Utoda~x!5
a

b
e2b(x21)1a~x21!;

~c! log-type potential

U ln~x!5x2 ln~x!.

For the Toda potential, we setab51 andb510. Each po-
tential has one minimum atx51 and the function forms are
similar. However, increasing behaviors of the repuls
forces derived from the three potentials are, in a very sh
distance, different from one another.

In order to maintain a universal viewpoint, we first co
sider a velocity scale characterized by the nonlinearity of
spring. LetU(x) be the potential energy of the spring, whic
is chosen to beU(1)50 assuming the natural length of th
spring to be unity. We can define the amplitudex* at which
the harmonic term and the sum of the remaining terms
equal in the Taylor expansion, i.e.,x* is given by the solu-
tion of

1

2

d2U~x!

dx2 Ux51~x* 21!25U~x!2
1

2

d2U~x!

dx2 U
x51

~x* 21!2.

The velocity, which corresponds tox* is

v* 5A2U~x* !.

Hereafter, we discuss the velocity dependence of the c
sions on the scale ofv* .

In Fig. 4, we plot the COR versus initial velocity for eac
case, as determined by numerical simulations. In the limi
small velocity, it is clear that COR approaches the va
obtained for the harmonic chain. The COR decreases w

- FIG. 4. Coefficient of restitution for the collisions of log-
Toda-, and Lennard-Jones-type chains as a function of collis
velocity. The chains consist of 100 particles.
9-3
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increasing initial velocity and has a minimum nearv51. We
note that the COR lies on almost the same curve for all th
types of potential.

Figure 5 showsn dependence of 12h for different values
of initial velocity. In very low-velocity collision, as expecte
from the result for modelA, dissipation rate 12h will ap-
proach to zero in the thermodynamic limit. Nearv051, the
COR does not approach unity but remains a constant,
than unity even in the thermodynamic limit. We can, hen
conclude that nonlinearity of the potentialU(x) causes the
dissipation, which does not appear in modelA. Using a tech-
nique based on the perturbative theory, we consider the
lision of modelB for small initial incident velocityv0!1.
During collision processes, the particlej 51 transmits vibra-
tion force to its neighbor particle. Let us regard this force
external forceF(t), which acts on the chain. The characte
istic frequency of this force isvext52p/Dt.2A2v. This
frequency is higher than any frequency of fundamen
modes of the chain. Hence, no fundamental mode is exc
by the force. In this situation, the amplitude of each particl
vibration is rapidly damped progressively into the chain, i
the particlej 51 has the largest amplitude during collision.
is expected thatDt will shorten with increasing initial veloc-
ity. As a first approximation, we take into account only t
change ofDt against initial velocityv0 in Eq. ~7!. To esti-
mate the velocity dependence ofDt, let us consider the col
lision of a Lennard-Jones-type chain withn52. In this case,
particle j 51 collides with the wall two times. The Hamil
tonian is

H5
m

2
~ ẋ1

21 ẋ2
2!1ULJ~x22x121!1Vw . ~13!

FIG. 5. The relationship between dissipation rate and numbe
particles in the collision of Lennard-Jones-type chain. Each p
corresponds to a different initial velocity:v050.780 ~m!,
0.390 (L), 0.160 (l), 0.078 (h), and 0.008 (d).
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Let x5x22x12, and xg5(x21x1)/2. For initial condi-
tions, we adopt Eq.~6!. Immediately after the first collision
of particlex1 , x andxg and their time derivatives become

x50, xg5,/2,

ẋ522v0 , ẋg50. ~14!

Taking into account the second order ofULJ and solving the
equation of motion with the initial conditions of Eq.~14! in
the first-order perturbation theory, one can obtain the inter
Dt8 between first and second collisions of particlex1 as

Dt8.Dt~12a ṽ !, ~15!

where ṽ5v0 /v* and a50.808. Substituting this into Eq
~7!, we have

Ej5
4

n
cos2S p j

2nD sin2F1

2
v j f ~n!Dt~12a ṽ !G

sin2F1

2
v jDt~12a ṽ !G . ~16!

In the limit n→`, v j can be replaced with the linear form

v j5v
p j

n
. ~17!

When ṽ!1, Eq. ~16! can be approximated as

Ej.
32

np2 S n

j D
2

sin2Fa ṽpnS j

nD G .
Substituting this into Eq.~3!, we have the dissipation rate

12h5(
j 51

n
Ej

E
.

64

np4E0

1

dx
1

x2
sin2~a ṽnx!

.
64

p3
a ṽE

0

`

dx
sin2~ax!

x2
5Cṽ, ~18!

whereC5(32/p2)a.2.61. This implies that the dissipatio
rate 12h increases with the power lawvp, where p51.
This result agrees with numerical simulation for low-veloc
collision. However the constantC is not in accord with the
above result~our numerical simulation givesC50.66).

The above result directly depends on the exponent of
lowest unharmonic term of interparticle potential energy.
the case of Lennard-Jones potential, the exponentr 53. The
exponent is the same for other types of chains. Let us disc
more general cases. Suppose that the interparticle pote
energy can be expanded around its equilibrium position

U~x!5 1
2 x21cxr1higher order, ~19!

of
t

9-4
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where the constantc is a positive~negative! number whenr
is even~odd!. In this case, the contact time shortens asv0

r 22.
The dissipation rate, hence, increases as

12h} ṽ r 22. ~20!

Taking potential energy@Eq. ~19!# for the interaction of par-
ticles in modelB, we plot numerical results of dissipatio
rate in Fig. 6 forṽ!1. The results agree with Eq.~20!.

When the particles in the chain can be regarded as r
spheres, interparticle interaction is of thed function type.
Collision between the two spheres is reduced to a sim
exchange of their momenta. We can exactly solve the en
dynamics of the collision between the chain and a rigid w
The spherej 51 collides with the walln times and no inter-
nal vibration remains after the collision, i.e., the COR
exactly unity in this case.

In the limit of high-velocity collision of modelB, particles
interact like rigid spheres becauseULJ , Utoda , andUlog all
behave like hard core potentials within a very short distan
In Fig. 7, we show the COR of a Lennard-Jones-type ch
and f (n)/n versus collision velocity on the same plot. Th

FIG. 6. Increase of dissipation rates. We plot the dissipation
of modelB minus that of modelA for r 53,4, and 5. Fitted lines
have slopes 1.34, 2.09, and 3.14, respectively.
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rate f (n)/n approaches unity forṽ.1. This indicates that
particles interact like rigid spheres in high-velocity collisio
Consequently COR increases in the high-velocity regim
This is a feature, which only the one-dimensional model
hibits and is unrealistic. In real systems, plastic deformat
is crucial in such high-velocity collisions.

IV. SUMMARY

We have presented a simple one-dimensional microsc
model of colliding bodies to understand the energy dissi
tion process. Lennard-Jones, Toda, and log-type poten
are chosen as interactions between particles. We found
the COR depends on the initial velocity and is minimum

ṽ.1. These behaviors are independent of the potential fo
In low-velocity collisions, the relationship between the e
ergy dissipation rate and collision velocity is derived usi
perturbation methods.
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